점과 선분 사이의 최단 거리
점과 선 세그먼트 사이의 최단 거리를 찾으려면 기본 기능이 필요합니다. 원하는 언어로 솔루션을 자유롭게 작성하십시오. (Javascript)를 사용중인 것으로 번역 할 수 있습니다.
편집 : 내 선 세그먼트는 두 개의 끝점으로 정의됩니다. 따라서 내 선분 AB
은 두 점 A (x1,y1)
과로 정의됩니다 B (x2,y2)
. 이 선분과 점 사이의 거리를 찾으려고합니다 C (x3,y3)
. 내 지오메트리 기술이 녹슨 것이므로 내가 본 예제가 혼란스러워서 죄송합니다.
엘리, 정하신 코드가 잘못되었습니다. 선분이있는 선 근방이지만 선분의 한쪽 끝에서 멀리 떨어진 지점은 선분 근처에서 잘못 판단됩니다.
업데이트 : 언급 된 잘못된 답변은 더 이상 허용되는 답변이 아닙니다.
다음은 C ++로 된 올바른 코드입니다. class vec2 {float x,y;}
기본적으로 2D- 벡터 클래스를 가정합니다 . 기본적으로 연산자는 더하기, 빼기, 크기 조정 등의 거리와 내적 및 점 곱 함수 (예 :)를 갖습니다 x1 x2 + y1 y2
.
float minimum_distance(vec2 v, vec2 w, vec2 p) {
// Return minimum distance between line segment vw and point p
const float l2 = length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) return distance(p, v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
const float t = max(0, min(1, dot(p - v, w - v) / l2));
const vec2 projection = v + t * (w - v); // Projection falls on the segment
return distance(p, projection);
}
편집 : Javascript 구현이 필요했기 때문에 여기에는 종속성 (또는 주석이 없지만 위의 직접 포트)이 없습니다. 포인트와 객체로 표현 x
하고 y
속성.
function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
var l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
t = Math.max(0, Math.min(1, t));
return dist2(p, { x: v.x + t * (w.x - v.x),
y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }
편집 2 : Java 버전이 필요했지만 더 중요하게는 2d 대신 3d로 필요했습니다.
float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
t = constrain(t, 0, 1);
return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}
다음은 자바 스크립트에서 가장 간단한 코드입니다.
x, y는 목표 점이고 x1, y1에서 x2, y2는 선분입니다.
업데이트 : 주석에서 길이가 0 인 문제가 수정되었습니다.
function pDistance(x, y, x1, y1, x2, y2) {
var A = x - x1;
var B = y - y1;
var C = x2 - x1;
var D = y2 - y1;
var dot = A * C + B * D;
var len_sq = C * C + D * D;
var param = -1;
if (len_sq != 0) //in case of 0 length line
param = dot / len_sq;
var xx, yy;
if (param < 0) {
xx = x1;
yy = y1;
}
else if (param > 1) {
xx = x2;
yy = y2;
}
else {
xx = x1 + param * C;
yy = y1 + param * D;
}
var dx = x - xx;
var dy = y - yy;
return Math.sqrt(dx * dx + dy * dy);
}
이것은 FINITE LINE SEGMENTS를 위해 구현 된 것으로, 대부분의 다른 함수처럼 무한한 선이 아닙니다 (그래서 내가 만든 이유).
파이썬 :
def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
px = x2-x1
py = y2-y1
norm = px*px + py*py
u = ((x3 - x1) * px + (y3 - y1) * py) / float(norm)
if u > 1:
u = 1
elif u < 0:
u = 0
x = x1 + u * px
y = y1 + u * py
dx = x - x3
dy = y - y3
# Note: If the actual distance does not matter,
# if you only want to compare what this function
# returns to other results of this function, you
# can just return the squared distance instead
# (i.e. remove the sqrt) to gain a little performance
dist = (dx*dx + dy*dy)**.5
return dist
AS3 :
public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
var something:Number = p2.x*p2.x + p2.y*p2.y;
var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;
if (u > 1)
u = 1;
else if (u < 0)
u = 0;
var x:Number = segA.x + u * p2.x;
var y:Number = segA.y + u * p2.y;
var dx:Number = x - p.x;
var dy:Number = y - p.y;
var dist:Number = Math.sqrt(dx*dx + dy*dy);
return dist;
}
자바
private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
{
float px=x2-x1;
float py=y2-y1;
float temp=(px*px)+(py*py);
float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
float x = x1 + u * px;
float y = y1 + u * py;
float dx = x - x3;
float dy = y - y3;
double dist = Math.sqrt(dx*dx + dy*dy);
return dist;
}
내 질문 스레드 에서 C, C # / .NET 2.0 또는 Java의 모든 경우에 점과 선 세그먼트 사이의 최단 2D 거리를 계산하는 방법은 무엇입니까? 내가 하나 찾을 때 여기에 C #을 대답을 넣어 질문을 받았다 : 그래서 여기가에서 수정 http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static :
//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] BC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
BC[0] = pointC[0] - pointB[0];
BC[1] = pointC[1] - pointB[1];
double dot = AB[0] * BC[0] + AB[1] * BC[1];
return dot;
}
//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] AC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
AC[0] = pointC[0] - pointA[0];
AC[1] = pointC[1] - pointA[1];
double cross = AB[0] * AC[1] - AB[1] * AC[0];
return cross;
}
//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
double d1 = pointA[0] - pointB[0];
double d2 = pointA[1] - pointB[1];
return Math.Sqrt(d1 * d1 + d2 * d2);
}
//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC,
bool isSegment)
{
double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
if (isSegment)
{
double dot1 = DotProduct(pointA, pointB, pointC);
if (dot1 > 0)
return Distance(pointB, pointC);
double dot2 = DotProduct(pointB, pointA, pointC);
if (dot2 > 0)
return Distance(pointA, pointC);
}
return Math.Abs(dist);
}
나는 대답하지 않고 질문을하는 @SO이므로 어떤 이유로 백만 표를 얻지 않고 비판을하기를 바랍니다. 이 스레드의 솔루션이 이국적인 언어 (Fortran, Mathematica)를 사용하거나 누군가가 잘못 표시했기 때문에 다른 사람의 아이디어를 공유하고 싶었습니다. 나를 위해 유일하게 유용한 것은 (Grumdrig) C ++로 작성되었으며 아무도 태그를 잘못 붙였습니다. 그러나 호출 된 메소드 (도트 등)가 없습니다.
F #에서 점 c
과 선 세그먼트 사이 의 거리는 다음 a
과 b
같습니다.
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
벡터 d
에서 점 a
으로 b
선분을 따라. d/s
with 의 내적 c-a
은 무한 선과 점 사이의 가장 가까운 접근 점의 매개 변수 를 제공합니다 c
. min
및 max
기능의 범위에이 매개 변수를 고정하는데 사용되는 0..s
포인트와 거짓말되도록 a
하고 b
. 마지막으로 길이는 선분에서 가장 가까운 점 a+p-c
까지의 거리입니다 c
.
사용 예 :
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
Mathematica에서
세그먼트의 파라 메트릭 설명을 사용하고 세그먼트에 의해 정의 된 선에 점을 투영합니다. 세그먼트에서 매개 변수가 0에서 1로 이동함에 따라 투영이이 범위를 벗어나면 세그먼트에 수직 인 직선 대신 해당 엔트 포인트까지의 거리를 계산합니다.
Clear["Global`*"];
distance[{start_, end_}, pt_] :=
Module[{param},
param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
here means vector product*)
Which[
param < 0, EuclideanDistance[start, pt], (*If outside bounds*)
param > 1, EuclideanDistance[end, pt],
True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
]
];
플로팅 결과 :
Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]
컷오프 거리 보다 가까운 점을 그립니다 .
등고선 플롯 :
관심있는 사람은 Joshua의 Javascript 코드를 Objective-C로 간단하게 변환합니다.
- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrtf(dx * dx + dy * dy);
}
이 솔루션을 사용하려면 MKMapPoint
다른 사람이 필요로 할 경우 공유 할 것입니다. 약간의 변화 만 있으면 거리가 미터 단위로 반환됩니다.
- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
어제 방금 썼어 Actionscript 3.0에는 기본적으로 Javascript이지만 동일한 Point 클래스가 없을 수도 있습니다.
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
또한 문제에 대한 완전하고 읽기 쉬운 토론이 있습니다 : notejot.com
게으른 경우 위의 @Grumdrig 솔루션의 Objective-C 포트는 다음과 같습니다.
CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
CGFloat l2 = dist2(v, w);
if (l2 == 0.0f) return dist2(p, v);
CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0.0f) return dist2(p, v);
if (t > 1.0f) return dist2(p, w);
return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
파이썬으로 코딩에 저항 할 수 없었습니다 :)
from math import sqrt, fabs
def pdis(a, b, c):
t = b[0]-a[0], b[1]-a[1] # Vector ab
dd = sqrt(t[0]**2+t[1]**2) # Length of ab
t = t[0]/dd, t[1]/dd # unit vector of ab
n = -t[1], t[0] # normal unit vector to ab
ac = c[0]-a[0], c[1]-a[1] # vector ac
return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)
print pdis((1,1), (2,2), (2,0)) # Example (answer is 1.414)
포트란에 대한 Ditto :)
real function pdis(a, b, c)
real, dimension(0:1), intent(in) :: a, b, c
real, dimension(0:1) :: t, n, ac
real :: dd
t = b - a ! Vector ab
dd = sqrt(t(0)**2+t(1)**2) ! Length of ab
t = t/dd ! unit vector of ab
n = (/-t(1), t(0)/) ! normal unit vector to ab
ac = c - a ! vector ac
pdis = abs(ac(0)*n(0)+ac(1)*n(1)) ! Projection of ac to n (the minimum distance)
end function pdis
program test
print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/)) ! Example (answer is 1.414)
end program test
다음은 Grumdrig 솔루션의 더 완벽한 철자입니다. 이 버전은 또한 가장 가까운 지점 자체를 반환합니다.
#include "stdio.h"
#include "math.h"
class Vec2
{
public:
float _x;
float _y;
Vec2()
{
_x = 0;
_y = 0;
}
Vec2( const float x, const float y )
{
_x = x;
_y = y;
}
Vec2 operator+( const Vec2 &v ) const
{
return Vec2( this->_x + v._x, this->_y + v._y );
}
Vec2 operator-( const Vec2 &v ) const
{
return Vec2( this->_x - v._x, this->_y - v._y );
}
Vec2 operator*( const float f ) const
{
return Vec2( this->_x * f, this->_y * f );
}
float DistanceToSquared( const Vec2 p ) const
{
const float dX = p._x - this->_x;
const float dY = p._y - this->_y;
return dX * dX + dY * dY;
}
float DistanceTo( const Vec2 p ) const
{
return sqrt( this->DistanceToSquared( p ) );
}
float DotProduct( const Vec2 p ) const
{
return this->_x * p._x + this->_y * p._y;
}
};
// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
if ( distSq == 0.0 )
{
// v == w case
(*q) = v;
return v.DistanceTo( p );
}
// consider the line extending the segment, parameterized as v + t (w - v)
// we find projection of point p onto the line
// it falls where t = [(p-v) . (w-v)] / |w-v|^2
const float t = ( p - v ).DotProduct( w - v ) / distSq;
if ( t < 0.0 )
{
// beyond the v end of the segment
(*q) = v;
return v.DistanceTo( p );
}
else if ( t > 1.0 )
{
// beyond the w end of the segment
(*q) = w;
return w.DistanceTo( p );
}
// projection falls on the segment
const Vec2 projection = v + ( ( w - v ) * t );
(*q) = projection;
return p.DistanceTo( projection );
}
float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
Vec2 q;
float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );
(*qX) = q._x;
(*qY) = q._y;
return distance;
}
void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
float qX;
float qY;
float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}
void TestDistanceFromLineSegmentToPoint()
{
TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
아크 탄젠트를 사용한 한 라인 솔루션 :
아이디어는 이동하는 것입니다 을 만들기 위해 (0, 0)과 회전 삼각형 시계 방향으로 C는 이런 일이 때, X 축에 누워 으로는 거리가 될 것입니다.
- 각도 = Atan (Cy-Ay, Cx-Ax);
- b 각도 = 아탄 (By-Ay, Bx-Ax);
- AB 길이 = Sqrt ((Bx-Ax) ^ 2 + (By-Ay) ^ 2)
- By = Sin (bAngle-aAngle) * ABLength
씨#
public double Distance(Point a, Point b, Point c)
{
// normalize points
Point cn = new Point(c.X - a.X, c.Y - a.Y);
Point bn = new Point(b.X - a.X, b.Y - a.Y);
double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);
return Math.Sin(angle)*abLength;
}
한 줄 C # (SQL로 변환)
double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
위의 Grumdrig의 답변에 대한이 수정을 고려하십시오. 부동 소수점 부정확성이 문제를 일으킬 수 있다는 것을 여러 번 알게 될 것입니다. 아래 버전에서는 복식을 사용하고 있지만 수레로 쉽게 변경할 수 있습니다. 중요한 부분은 엡실론을 사용하여 "경사"를 처리한다는 것입니다. 또한 교차로가 어디에서 발생했는지 또는 전혀 발생했는지 알고 싶어하는 경우가 많습니다. 반환 된 t가 <0.0 또는> 1.0이면 충돌이 발생하지 않은 것입니다. 그러나 충돌이 발생하지 않더라도 세그먼트에서 P에 가장 가까운 지점이 어디인지 알고 싶을 것이므로 qx와 qy를 사용 하여이 위치를 반환합니다.
double PointSegmentDistanceSquared( double px, double py,
double p1x, double p1y,
double p2x, double p2y,
double& t,
double& qx, double& qy)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2x - p1x;
double dy = p2y - p1y;
double dp1x = px - p1x;
double dp1y = py - p1y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
qx = p1x;
qy = p1y;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (p1x, p1y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
qx = p1x;
qy = p1y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (p2x, p2y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
qx = p2x;
qy = p2y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
qx = p1x + (t * dx);
qy = p1y + (t * dy);
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = px - qx;
double dpqy = py - qy;
return ((dpqx * dpqx) + (dpqy * dpqy));
}
}
나는 당신이 가장 짧은 것을 찾고 싶다고 가정합니다.점과 선분 사이의 거리; 이렇게하려면 점을 통과하는 선분 (lineB)에 수직 인 선 (lineA)을 찾아 해당 선 (lineA)과 선분 (lineB)을 통과하는 선의 교차점을 결정해야합니다. ; 해당 점이 선분의 두 점 사이에 있으면 거리는 점과 방금 찾은 점 사이의 거리이며 선 A와 선 B의 교차점입니다. 점이 선분의 두 점 사이에 있지 않으면 점과 선분의 두 끝점 사이의 거리를 가져와야합니다. 이것은 점과 선분의 두 점 사이의 제곱 거리 (제곱근을 피하기 위해)를 취함으로써 쉽게 수행 될 수 있습니다. 더 가까운 쪽이든 그 쪽의 제곱근을 취하십시오.
Grumdrig의 C ++ / JavaScript 구현은 매우 유용했기 때문에 사용중인 Python 직접 포트를 제공했습니다. 완전한 코드는 여기에 있습니다 .
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
인수없이 함수를 호출하면 내장 "자체 테스트"기능이있는 Matlab 코드 :
function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )
if( nargin < 3 )
selfTest();
r=0;
else
vx = xy0(1)-xyP(1);
vy = xy0(2)-xyP(2);
ux = xy1(1)-xy0(1);
uy = xy1(2)-xy0(2);
lenSqr= (ux*ux+uy*uy);
detP= -vx*ux + -vy*uy;
if( detP < 0 )
r = norm(xy0-xyP,2);
elseif( detP > lenSqr )
r = norm(xy1-xyP,2);
else
r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
end
end
function selfTest()
%#ok<*NASGU>
disp(['invalid args, distPointToLineSegment running (recursive) self-test...']);
ptA = [1;1]; ptB = [-1;-1];
ptC = [1/2;1/2]; % on the line
ptD = [-2;-1.5]; % too far from line segment
ptE = [1/2;0]; % should be same as perpendicular distance to line
ptF = [1.5;1.5]; % along the A-B but outside of the segment
distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
figure(1); clf;
circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
'Curvature', [1 1], 'EdgeColor', c);
plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
hold off;
axis([-3 3 -3 3]); axis equal;
end
end
그리고 이제 내 솔루션도 ... (자바 스크립트)
Math.pow 함수를 피하려고 시도하기 때문에 매우 빠릅니다.
보시다시피, 함수의 끝에 선의 거리가 있습니다.
코드는 lib http://www.draw2d.org/graphiti/jsdoc/#!/example 에서 가져온 것입니다 .
/**
* Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
* A simple hit test.
*
* @return {boolean}
* @static
* @private
* @param {Number} coronaWidth the accepted corona for the hit test
* @param {Number} X1 x coordinate of the start point of the line
* @param {Number} Y1 y coordinate of the start point of the line
* @param {Number} X2 x coordinate of the end point of the line
* @param {Number} Y2 y coordinate of the end point of the line
* @param {Number} px x coordinate of the point to test
* @param {Number} py y coordinate of the point to test
**/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1, X2, Y2, px, py)
{
// Adjust vectors relative to X1,Y1
// X2,Y2 becomes relative vector from X1,Y1 to end of segment
X2 -= X1;
Y2 -= Y1;
// px,py becomes relative vector from X1,Y1 to test point
px -= X1;
py -= Y1;
var dotprod = px * X2 + py * Y2;
var projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of X1,Y1 away from X2,Y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to X2,Y2
// X2,Y2 are already the negative of X1,Y1=>X2,Y2
// to get px,py to be the negative of px,py=>X2,Y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = X2 - px;
py = Y2 - py;
dotprod = px * X2 + py * Y2;
if (dotprod <= 0.0) {
// px,py is on the side of X2,Y2 away from X1,Y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between X1,Y1 and X2,Y2
// dotprod is the length of the px,py vector
// projected on the X2,Y2=>X1,Y1 vector times the
// length of the X2,Y2=>X1,Y1 vector
projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
var lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return Math.sqrt(lenSq)<coronaWidth;
};
t-sql로 코딩
점은 (@px, @py)이고 선분은 (@ax, @ay)에서 (@bx, @by)
create function fn_sqr (@NumberToSquare decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = @NumberToSquare * @NumberToSquare
return @Result
end
go
create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
return @Result
end
go
create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @l2 decimal(18,10)
set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
if @l2 = 0
return dbo.fn_Distance(@px, @py, @ax, @ay)
declare @t decimal(18,10)
set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
if (@t < 0)
return dbo.fn_Distance(@px, @py, @ax, @ay);
if (@t > 1)
return dbo.fn_Distance(@px, @py, @bx, @by);
return dbo.fn_Distance(@px, @py, @ax + @t * (@bx - @ax), @ay + @t * (@by - @ay))
end
go
create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go
--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1)
--result = 2.2360679775
--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1)
--result = 2.4961508830
--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1)
--result = 0.0000000000
StackOverflow의 다른 모든 사람들이 답변 (지금까지 23 답변)에 기여한 것처럼 보이므로 여기 C #에 대한 나의 기여가 있습니다. 이것은 대부분 M. Katz의 답변을 기반으로하며 Grumdrig의 답변을 기반으로합니다.
public struct MyVector
{
private readonly double _x, _y;
// Constructor
public MyVector(double x, double y)
{
_x = x;
_y = y;
}
// Distance from this point to another point, squared
private double DistanceSquared(MyVector otherPoint)
{
double dx = otherPoint._x - this._x;
double dy = otherPoint._y - this._y;
return dx * dx + dy * dy;
}
// Find the distance from this point to a line segment (which is not the same as from this
// point to anywhere on an infinite line). Also returns the closest point.
public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
out MyVector closestPoint)
{
return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint));
}
// Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want
// to compare several distances to find the smallest or largest, but don't need the distance
public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1,
MyVector lineSegmentPoint2, out MyVector closestPoint)
{
// Compute length of line segment (squared) and handle special case of coincident points
double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
if (segmentLengthSquared < 1E-7f) // Arbitrary "close enough for government work" value
{
closestPoint = lineSegmentPoint1;
return this.DistanceSquared(closestPoint);
}
// Use the magic formula to compute the "projection" of this point on the infinite line
MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;
// Handle the two cases where the projection is not on the line segment, and the case where
// the projection is on the segment
if (t <= 0)
closestPoint = lineSegmentPoint1;
else if (t >= 1)
closestPoint = lineSegmentPoint2;
else
closestPoint = lineSegmentPoint1 + (lineSegment * t);
return this.DistanceSquared(closestPoint);
}
public double DotProduct(MyVector otherVector)
{
return this._x * otherVector._x + this._y * otherVector._y;
}
public static MyVector operator +(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
}
public static MyVector operator -(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
}
public static MyVector operator *(MyVector aVector, double aScalar)
{
return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
}
// Added using ReSharper due to CodeAnalysis nagging
public bool Equals(MyVector other)
{
return _x.Equals(other._x) && _y.Equals(other._y);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
return obj is MyVector && Equals((MyVector) obj);
}
public override int GetHashCode()
{
unchecked
{
return (_x.GetHashCode()*397) ^ _y.GetHashCode();
}
}
public static bool operator ==(MyVector left, MyVector right)
{
return left.Equals(right);
}
public static bool operator !=(MyVector left, MyVector right)
{
return !left.Equals(right);
}
}
여기 작은 테스트 프로그램이 있습니다.
public static class JustTesting
{
public static void Main()
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
for (int i = 0; i < 10000000; i++)
{
TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
TestIt(5, 1, 0, 0, 10, 0, 1.0);
TestIt(1, 5, 0, 0, 0, 10, 1.0);
}
stopwatch.Stop();
TimeSpan timeSpan = stopwatch.Elapsed;
}
private static void TestIt(float aPointX, float aPointY,
float lineSegmentPoint1X, float lineSegmentPoint1Y,
float lineSegmentPoint2X, float lineSegmentPoint2Y,
double expectedAnswer)
{
// Katz
double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(d1 == expectedAnswer);
/*
// Katz using squared distance
double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
*/
/*
// Matti (optimized)
double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY),
new PointF(lineSegmentPoint1X, lineSegmentPoint1Y),
new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
*/
}
private static double DistanceFromPointToLineSegment(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
}
보시다시피 Sqrt () 메서드를 피하는 버전과 일반 버전의 차이점을 측정하려고했습니다. 내 테스트에 따르면 약 2.5 %를 절약 할 수 있지만 확실하지는 않습니다. 다양한 테스트 실행의 변형은 동일한 크기입니다. 또한 Matti가 게시 한 버전 (명확한 최적화)을 측정하려고 시도했으며 그 버전은 Katz / Grumdrig 코드 기반 버전보다 약 4 % 느립니다.
편집 : 우연히도 교차 곱 (및 Sqrt ())을 사용하여 무한 선 (선 세그먼트가 아닌)까지의 거리를 찾는 방법을 측정하려고 시도했으며 약 32 % 빠릅니다.
다음은 devnullicus의 C ++ 버전을 C #으로 변환 한 것입니다. 구현을 위해 교차점을 알아야하고 그의 솔루션이 잘 작동한다는 것을 알았습니다.
public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dX = lineEnd.X - lineStart.X;
double dY = lineEnd.Y - lineStart.Y;
double dp1X = point.X - lineStart.X;
double dp1Y = point.Y - lineStart.Y;
double segLenSquared = (dX * dX) + (dY * dY);
double t = 0.0;
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
intersectPoint = lineStart;
t = 0.0;
distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
intersectPoint = lineStart;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
intersectPoint = lineEnd;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqX = point.X - intersectPoint.X;
double dpqY = point.Y - intersectPoint.Y;
distance = ((dpqX * dpqX) + (dpqY * dpqY));
}
return true;
}
여기에 스위프트를 사용하고 있습니다.
/* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
let A = p.x - l1.x
let B = p.y - l1.y
let C = l2.x - l1.x
let D = l2.y - l1.y
let dot = A * C + B * D
let len_sq = C * C + D * D
let param = dot / len_sq
var xx, yy: CGFloat
if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
xx = l1.x
yy = l1.y
} else if param > 1 {
xx = l2.x
yy = l2.y
} else {
xx = l1.x + param * C
yy = l1.y + param * D
}
let dx = p.x - xx
let dy = p.y - yy
return sqrt(dx * dx + dy * dy)
}
다음 웹 사이트에서 Matlab GEOMETRY 도구 상자를 참조하십시오. http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
ctrl + f를 입력하고 "세그먼트"를 입력하여 선분 관련 기능을 찾으십시오. "segment_point_dist_2d.m"및 "segment_point_dist_3d.m"기능이 필요합니다.
GEOMETRY 코드는 C 버전 및 C ++ 버전과 FORTRAN77 버전, FORTRAN90 버전 및 MATLAB 버전으로 제공됩니다.
Joshua의 Javascript를 기반으로 한 AutoHotkeys 버전 :
plDist(x, y, x1, y1, x2, y2) {
A:= x - x1
B:= y - y1
C:= x2 - x1
D:= y2 - y1
dot:= A*C + B*D
sqLen:= C*C + D*D
param:= dot / sqLen
if (param < 0 || ((x1 = x2) && (y1 = y2))) {
xx:= x1
yy:= y1
} else if (param > 1) {
xx:= x2
yy:= y2
} else {
xx:= x1 + param*C
yy:= y1 + param*D
}
dx:= x - xx
dy:= y - yy
return sqrt(dx*dx + dy*dy)
}
여기에 Java 구현이 표시되지 않았으므로 Javascript 함수를 허용 된 답변에서 Java 코드로 변환했습니다.
static double sqr(double x) {
return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
double l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0) return dist2(p, v);
if (t > 1) return dist2(p, w);
return dist2(p, new DoublePoint(
v.x + t * (w.x - v.x),
v.y + t * (w.y - v.y)
));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
public double x;
public double y;
public DoublePoint(double x, double y) {
this.x = x;
this.y = y;
}
}
WPF 버전 :
public class LineSegment
{
private readonly Vector _offset;
private readonly Vector _vector;
public LineSegment(Point start, Point end)
{
_offset = (Vector)start;
_vector = (Vector)(end - _offset);
}
public double DistanceTo(Point pt)
{
var v = (Vector)pt - _offset;
// first, find a projection point on the segment in parametric form (0..1)
var p = (v * _vector) / _vector.LengthSquared;
// and limit it so it lays inside the segment
p = Math.Min(Math.Max(p, 0), 1);
// now, find the distance from that point to our point
return (_vector * p - v).Length;
}
}
씨#
@Grumdrig 에서 적응
public static double MinimumDistanceToLineSegment(this Point p,
Line line)
{
var v = line.StartPoint;
var w = line.EndPoint;
double lengthSquared = DistanceSquared(v, w);
if (lengthSquared == 0.0)
return Distance(p, v);
double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
var projection = v + t * (w - v);
return Distance(p, projection);
}
public static double Distance(Point a, Point b)
{
return Math.Sqrt(DistanceSquared(a, b));
}
public static double DistanceSquared(Point a, Point b)
{
var d = a - b;
return DotProduct(d, d);
}
public static double DotProduct(Point a, Point b)
{
return (a.X * b.X) + (a.Y * b.Y);
}
2D 및 3D 솔루션
선분이 (0, 0, 0)-(d, 0, 0)
되고 포인트 가되도록 기준 변경을 고려하십시오 (u, v, 0)
. 최단 거리는 해당 평면에서 발생하며
u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u -> d(B, C)
(선으로의 투영에 따라 끝점 중 하나 또는 지지선까지의 거리. 등거리 궤적은 2 개의 반원과 2 개의 선분으로 구성됩니다.)
상기 식에서, d는 세그먼트 AB의 길이이고, u, v는 각각 AB / d (AB 방향의 단위 벡터) 및 AC의 스칼라 곱 및 (모듈러스의) 곱이다. 따라서 벡터 적으로
AB.AC ≤ 0 -> |AC|
0 ≤ AB.AC ≤ AB² -> |ABxAC|/|AB|
AB² ≤ AB.AC -> |BC|
내가 작성한 코드는 다음과 같습니다. 이 코드는 점이 형식으로 정의되어 있다고 가정합니다 {x:5, y:7}
. 이것은 절대적으로 가장 효율적인 방법은 아니지만 내가 알아낼 수있는 가장 간단하고 이해하기 쉬운 코드입니다.
// a, b, and c in the code below are all points
function distance(a, b)
{
var dx = a.x - b.x;
var dy = a.y - b.y;
return Math.sqrt(dx*dx + dy*dy);
}
function Segment(a, b)
{
var ab = {
x: b.x - a.x,
y: b.y - a.y
};
var length = distance(a, b);
function cross(c) {
return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
};
this.distanceFrom = function(c) {
return Math.min(distance(a,c),
distance(b,c),
Math.abs(cross(c) / length));
};
}
위의 기능은 세로선에서 작동하지 않습니다. 다음은 잘 작동하는 기능입니다! 점 p1, p2가있는 선 CheckPoint는 p입니다.
public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
// (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
//d(P,L) = --------------------------------
// sqrt( (x2-x1)pow2 + (y2-y1)pow2 )
double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
double d = ch / del;
return (float)d;
}
C ++ 응답과 동일하지만 파스칼로 포팅되었습니다. point 매개 변수의 순서가 내 코드에 맞게 변경되었지만 동일합니다.
function Dot(const p1, p2: PointF): double;
begin
Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
result.x := p1.x - p2.x;
result.y := p1.y - p2.y;
end;
function ShortestDistance2(const p,v,w : PointF) : double;
var
l2,t : double;
projection,tt: PointF;
begin
// Return minimum distance between line segment vw and point p
//l2 := length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
l2 := Distance(v,w);
l2 := MPower(l2,2);
if (l2 = 0.0) then begin
result:= Distance(p, v); // v == w case
exit;
end;
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
if (t < 0.0) then begin
result := Distance(p, v); // Beyond the 'v' end of the segment
exit;
end
else if (t > 1.0) then begin
result := Distance(p, w); // Beyond the 'w' end of the segment
exit;
end;
//projection := v + t * (w - v); // Projection falls on the segment
tt.x := v.x + t * (w.x - v.x);
tt.y := v.y + t * (w.y - v.y);
result := Distance(p, tt);
end;
참고 URL : https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
'Programming' 카테고리의 다른 글
안드로이드의 의도는 무엇입니까? (0) | 2020.03.04 |
---|---|
일치하는 각 줄의 위와 아래에 grep을 어떻게 인쇄 할 수 있습니까? (0) | 2020.03.04 |
잘못된 번들 오류- "런칭 스토리 보드 필요" (0) | 2020.03.04 |
URL에 주어진 문자열이 포함되어 있는지 확인하는 방법은 무엇입니까? (0) | 2020.03.04 |
Xcode 4에서 프로젝트 이름 바꾸기 (0) | 2020.03.04 |